Mössbauer Spectroscopy and Magnetic Properties of Ba₅Fe^{III}_{3-x} M_x^{II} F_{19-x} (M = Fe, Cu)

Patrick Gredin, Ariel de Kozak,¹ and Angélique Pierrard

Laboratoire de Cristallochimie du Solide, U.R.A. CNRS 1388, Université Pierre-et-Marie-Curie, Tour 54, 4 place Jussieu, 75252 Paris Cedex 05, France

and

Yvon Calage

Laboratoire des Fluorures, U.R.A. CNRS 449, et de Physique de l'Etat Condensé, U.R.A. CNRS 807, Université du Maine, route de Laval, 72017 Le Mans Cedex, France

Received February 7, 1996; in revised form May 14, 1996; accepted May 16, 1996

The Mössbauer spectra of three phases of the tetragonal solid solution $Ba_5Fe_{3-x}^{III}M_x^{II}F_{19-x}$ (M = Fe, Cu) obtained by substitution of Fe^{3+} by M^{2+} ions, have been studied, as well as their magnetic properties. A mechanism of substitution of the Fe^{3+} cations is proposed according to the Mössbauer data. These compounds are paramagnetic until 4.2 K, with very weak antiferromagnetic interactions below 30–40 K. © 1996 Academic Press, Inc.

INTRODUCTION

 $Ba_5M_3F_{19}$ fluorides, all tetragonal, are disclosed in many BaF_2-MF_3 binary systems (M = Cr, Fe, Ga, In, Al) (1–5). These compounds are the lower limit of solid solutions formulated Ba₅ $M_{3-x}^{III}M'_{x}^{II}F_{19-x}$ with $0 \le x \le 1$, obtained by substitution of one third of the trivalent cations by bivalent cations. So, the upper limit of these solid solutions must be formulated $Ba_5M_2^{III}M'^{II}F_{18}$. In a previous work (6), we studied the ternary system BaF2-ScF3-CuF2 and particularly the solid solution $Ba_5Sc_{3-x}Cu_xF_{19-x}$ with $0 \le x \le 1$. We showed that the cell parameters do not follow Vegard's law, implying that the substitution of Sc³⁺ by Cu²⁺ is ordered. This fact is corroborated by the apparition of superstructure lines on the X-ray powder pattern of Ba₅Sc₂ CuF₁₈. We proposed a mechanism of substitution based on the description of the crystal structures of $Pb_5Fe_3F_{19}$ (7), $Sr_5Fe_3F_{19}(8)$, and $Ba_5Cr_2CrF_{18}(9)$. In the present work, we give some new arguments in favor of our mechanism hypothesis, by a Mössbauer spectroscopic study of the three phases: $Ba_5Fe_{2.8}^{III}Fe_{0.2}^{II}F_{18.8}$, $Ba_5Fe_2^{III}Fe_{II}F_{18}$, and $Ba_5Fe_2^{III}Cu^{II}F_{18}$. These compounds are also characterized by X-ray diffraction and the thermal variation of their magnetic susceptibilities is measured.

SYNTHESES

The binary fluorides used in this work were prepared in the laboratory. To obtain iron(III) fluoride, first $FeF_3 \cdot 3H_2O$ is prepared in solution by reaction in a platinum crucible between $Fe(NO_3)_3 \cdot 9H_2O$ (R. P. Normapur) and an excess of fluorhydric acid at 40% (R. P. Normapur); the liquid is evaporated at 60°C and the solid is then slowly dehydrated in 6 h into light green FeF_3 under an anhydrous hydrogen fluoride stream at 750°C.

Iron(II) fluoride is prepared starting from $FeCl_2 \cdot 4H_2O$ (R. P. Normapur). The chloride is first dehydrated into $FeCl_2$ under an anhydrous hydrogen chloride stream at 250°C in 3 h and then immediately fluorinated in the same reactor into light beige FeF_2 by anhydrous hydrogen fluoride at 650°C in 4 h.

The colorless copper fluoride CuF_2 is prepared by reaction between its hydroxycarbonate (Merck, extra pure) and anhydrous hydrogen fluoride at 500°C. It is slightly hygroscopic, must be protected from moisture in a dessicator, and used within 2 weeks.

The ternary and quaternary fluorides $Ba_5Fe_3F_{19}$ and $Ba_5Fe_2MF_{18}$ (M = Fe, Cu) are synthesized by solid state reaction at 790°C for 20 h, in sealed gold tubes, starting from stoichiometric mixtures of the binary fluorides.

X-RAY DIFFRACTION

The cell parameters (Table 1) are determined and refined from X-ray powder diffraction data collected on a

¹ To whom correspondence should be addresssed; e-mail: adk@ccr.jussieu.fr

3.568

3.570

512

74

TABLE 1 Refined Cell Parameters for Ba₅Fe^{III}_{3-x} M_x^{II} F_{19-x} (M = Fe, Cu)

Compound	a (Å)	<i>c</i> (Å)	Ζ
$Ba_{5}Fe_{2.8}^{III}Fe_{0.2}^{II}F_{18.8}$	$a_{\rm F18.8} = 14.664(1)$	$c_{\rm F18.8} = 7.686(1)$	4
Ba ₅ Fe ₂ FeF ₁₈	$a_{ m F18.8} imes \sqrt{2} pprox a_{ m F18} = 20.565(2)$	$c_{\rm F18.8} \times 2 \approx c_{\rm F18}$ = 15.347(2)	16
Ba ₅ Fe ₂ CuF ₁₈	$a_{\rm F18.8} \times \sqrt{2} \approx a_{\rm F18}$ = 20.568(2)	$c_{\text{F18.8}} \times 2 \approx c_{\text{F18}}$ = 15.429(2)	16

17 cm vertical Philips PW 1050/25 diffractometer using a copper anticathode ($\lambda = 1.5418$ Å). The diffraction patterns are analyzed by the program EVA 3.01 (SOCABIM) which allows the deconvolution of the $K\alpha_2$ component and the determination of the peak positions. According to the Mössbauer results, a part of the Fe³⁺ ions was reduced into Fe^{2+} during the synthesis of Ba₅Fe₃F₁₉. So, the compound prepared must be formulated Ba₅Fe^{III}_{2.8}Fe^{III}_{0.2}F_{18.8}. All these fluorides (Tables 2-4) are indexed in the tetragonal system, using the crystal structure data of $Ba_5Fe_3F_{19}$ (10) for $Ba_5Fe_{2.8}^{III}Fe_{0.2}^{II}F_{18.8}$ and by isotypy with $Ba_5Cr_2CrF_{18}$ (9) for the two other phases.

DESCRIPTION OF THE STRUCTURE OF Ba₅Fe₃F₁₉ AND OF THE Ba₅Cr₂CrF₁₈-TYPE COMPOUNDS

The structures of $Ba_5Fe_3F_{19}$ (10) and $Ba_5Cr_2CrF_{18}$ (9) have been described by Welsch and Babel. They are closely related and based on three subnetworks (Table 5): isolated $[MF_6]$ octahedra which form two kinds of channels along the c axis (Fig. 1). The first channels contain isolated dimers $[M_2F_{10}]$ (Fig. 2) and in the second channels are inserted "independent" fluorine ions which form with barium ions infinite chains of edge-sharing or vertex-sharing [FBa₄] tetrahedra.

TABLE 2 d Spacings (Å) in BarEe^{III}Ee^{III}Ee₁₀E₁₀₀

TABLE 3 d Spacings (Å) in $Ba_5Fe_2FeF_{18}$							
d _{mes.}	$d_{ m calc.}$	h k l	I/I_0	d _{mes.}	$d_{\text{calc.}}$	h k l	I/I_0
7.26	7.271	220	6	3.425	3.427	600	14
6.15	6.150	202	1	3.393	3.393	224	35
5.34	5.346	321	3	3.250	3.252	620	35
5.14	5.141	400	4	3.203	3.205	532	100
4.95	4.961	312	2	3.075	3.075	404	37
4.60	4.599	420	7	2.547	2.547	732	6
4.46	4.471	213	1	2.515	2.516	741	3
4.096	4.098	332	2	2.482	2.481	624	4
3.941	3.944	422	2	2.425	2.424	660	3
3.835	3.837	004	25	2.380	2.380	316	8
3.705	3.710	114	3	2.299	2.299	840	27
3.633	3.635	440	10	2.289	2.289	644	21

2.235

2.235

426

3

This structural description of the "F19" and "F18" type compounds shows that the substitution of M^{3+} by M^{2+} in $Ba_5M_3F_{19}$ must be ordered. This fact is corroborated by the apparition of superstructure lines on the X-ray powder patterns of the Ba₅Fe₂ MF_{18} compounds ($M = Fe^{2+}, Cu^{2+}$) (for example: 321 at 5.34 Å on the pattern of Ba₅ Fe₂FeF₁₈), implying a larger cell compared with that of Ba₅Fe₃F₁₉ (10). The substitution of Fe³⁺ by M^{2+} takes place in the first channels, i.e., in the dimers, and the centers of the barium tetrahedra inserted in the second type of channels are all occupied by independent fluorine ions for "F19" and only half of them for "F18".

MÖSSBAUER SPECTROSCOPY OF Ba₅Fe^{III}₂₈Fe^{II}₂F_{18.8} AND $Ba_5Fe_2^{III}M^{II}F_{18}$ (M = Fe, Cu)

The Mössbauer spectra of samples containing 5 mg/cm² of natural iron were recorded at 300, 77, and 4.2 K using

TABLE 4 d Spacings (Å) in $Ba_5Fe_2CuF_{18}$

			п Биссел											
					$d_{\rm mes}$	$d_{\rm calc.}$	h k l	I/I_0	$d_{\rm mes}$	$d_{\rm calc.}$	h k l	I/I_0		
$d_{\text{calc.}}$	h k l	I/I_0	d _{mes.}	$d_{\text{calc.}}$	h k l	I/I_0								
							7.27	7.272	220	7	2.488	2.486	624	2
7.332	200	4	2.567	2.567	521	6	5.14	5.142	400	4	2.391	2.391	316	8
5.184	220	4	2.515	2.515	530	2	4.97	4.973	312	3	2.343	2.344	653	2
4.989	211	3	2.444	2.444	600	9	4.60	4.599	420	8	2.294	2.293	644	23
4.637	310	6	2.386	2.386	213	10	3.854	3.857	004	34	2.179	2.179	912	11
3.843	002	40	2.319	2.319	620	15	3.635	3.636	440	15	2.169	2.168	516	19
3.666	400	18	2.303	2.303	512	19	3.574	3.574	512	56	2.139	2.139	804	3
3.595	321	55	2.195	2.195	541	9	3.428	3.428	600	16	2.093	2.094	824	18
3.456	330	13	2.168	2.168	323	20	3.406	3.407	224	49	2.087	2.087	932	29
3.404	202	53	2.149	2.149	442	2	3.251	3.252	620	45	2.078	2.078	536	41
3.279	420	50	2.104	2.104	532	34	3.208	3.208	532	100	2.057	2.057	860	20
3.228	411	100	2.079	2.079	413	47	3.084	3.086	404	66	1.976	1.975	844	2
3.087	222	55	2.062	2.062	602	18	2.562	2.562	604	2	1.929	1.929	008	18
2.876	510	2	1.949	1.949	721	3	2.549	2.549	732	3	1.863	1.862	736	2

d_{mes.} 7.31 5.18 4.98 4.63 3.841 3.664 3.593 3.453 3.402 3.278 3.226 3.086 2.876

FIG. 1. (001) projection of the $[M_2F_{12}]$ subnetwork in Ba₅Fe₃F₁₉ (a) and $Ba_5Cr_2CrF_{18}$ (b). 1 and 2 indicate the two kinds of channels.

FIG. 2. $[M_2F_{10}]$ dimers in Ba₅Fe₃F₁₉ (a) and Ba₅Cr₂CrF₁₈ (b).

a ⁵⁷Co radioactive source diffused in a rhodium matrix. The spectra recorded at 4.2 K are similar to those obtained at 77 K: they are therefore not described hereafter.

The isomer shift relative to metallic iron (I.S.) and the

Comparison of the Three Subnetworks in Ba₅Fe₃F₁₉ and Ba₅Cr₂CrF₁₈ Subnetwork $Ba_5Cr_2CrF_{18}$ (*I*4₁/*a*) Ba₅Fe₃F₁₉ (I4/m)

TABLE 5

$[M_2F_{12}]$	Isolated $[M^{III}F_6]^2$	³⁻ octahedra (Fig. 1)
[<i>M</i> F ₅]	Isolated dimers $[Fe_2^{III}F_{10}]^{4-}$ of two octahedra (Fig. 2a)	Isolated dimers $[Cr_2^{II}F_{10}]^{6-}$ of octahedron + prism (Fig. 2b)
[Ba ₅ F ₂] or [Ba ₅ F]	Infinite chains of edge-sharing [FBa4] tetrahedra	Twisted chains of vertex-sharing [FBa4] tetrahedra

quadrupolar splitting (Q.S.) (Table 6) are in agreement with the usual observed values for iron(II) and iron(III) six-coordinated in high-spin fluorides (11). Nevertheless, the Lorentzian linewidths (Γ) are large, specially for the iron(III) which exhibits a linewidth Γ double in comparison with the natural one. This anomalous line broadening, already observed for other compounds with isolated iron polyhedra, can be attributed to an electronic relaxation effect (12).

$Ba_{5}Fe_{28}^{III}Fe_{02}^{II}F_{188}$

The spectra recorded at 300 and 77 K exhibit a well resolved quadrupolar doublet and a single line of weak intensity (Fig. 3). This one is in agreement with a parasitic iron(II) component ($\approx 6\%$ rate of the total iron at 300 K). At 4.2 K the compound is always paramagnetic despite a strong broadening of the linewidth of the doublet which

			F	e ^{III}					Fe ^{II}		
Compound	Т (К)	I.S. ^a (r	Γ nm/s) ± 0.	Q.S. 01	% ± 2	% Fe ^m	I.S. ^a (n	Γ nm/s) ± 0.	Q.S. 01	% ± 2	% Fe ¹¹
$Ba_5Fe_{2.8}^{III}Fe_{0.2}^{II}F_{18.8}$	300	0.43 0.43	0.40 0.40	0.35 0.67	67 27	94	1.09	0.32	2.23	6	6
	77	0.49 0.49	0.42 0.42	0.40 0.85	71 20	91	1.66	0.36	2.40	9	9
$Ba_5Fe_2CuF_{18}$	300 77	0.41 0.52	0.54 0.48	0.33 0.38	100 100	100 100					
Ba ₅ Fe ₂ FeF ₁₈	300	0.43	0.47	0.33	63	63	1.24	0.36	1.45	19	
	77	0.53	0.45	0.32	63	63	1.23 1.39 1.36	0.33 0.32 0.35	2.46 1.62 2.56	18 15 22	37

TABLE 6 Mössbauer Data for Ba₅Fe^{III}_{2.8}Fe^{III}_{0.2}F_{18.8} and Ba₅Fe^{III}₂ M^{II} F₁₈ (M = Fe, Cu)

^{*a*} Isomer shift relative to metallic iron at 300 K.

FIG. 3. Mossbauer spectra at 300 and 77 K for $Ba_5Fe_{12}^{11}Fe_{02}^{11}Fa_{18,8}$, $Ba_5Fe_2CuF_{18,8}$, and $Ba_5Fe_2FeF_{18,8}$.

indicates a beginning of a tridimensional magnetic order. The Fe²⁺ component is still in a paramagnetic state at this temperature, indicating that the Fe²⁺ cations are well part of the structure. So, the latter must be formulated Ba₅Fe³¹_{3-x}Fe¹¹_xFi⁻¹_{9-x} with $x \sim 0.18$. The theoretical distribution of the Fe³⁺ cations in Ba₅Fe₃Fi₁₉ (space group *I4/m*, No. 87 (10)) is 67% in the isolated octahedra (site 8*h*) and 33% in the isolated dimer (site 4*e*). The fitted results given in Table 6 indicate the presence of two Fe³⁺ sites with, at 300 K,

Site 1 Q.S. =
$$0.35 \text{ mm/s}$$
 $P = 67\%$
Site 2 Q.S. = 0.67 mm/s $P = 27\%$.

Site 1 corresponds to the isolated, quite regular, octahe-

dra, with a local symmetry of the octahedron which leads to a Q.S. value of 0.35 mm/s. Site 2 corresponds to the isolated dimer and the 6% rate of Fe²⁺ cations only takes place in the dimer: 27 + 6 = 33%.

$Ba_5Fe_2^{III}Cu^{II}F_{18}$

In this compound, isostructural with Ba₅Cr₂CrF₁₈ (space group $I4_1/a$, No. 88 (9)), exist four potential independent crystallographic sites for iron(III): two independent and quite regular octahedral sites in the $[M_2F_{12}]$ subnetwork (sites 16*f*) and two distorted six-coordinated sites in the $[M_2F_{10}]$ dimer (sites 8*e*). On the Mössbauer spectra only one single Fe³⁺ component is observed, leading to a fitted Q.S. value of 0.33 mm/s at 300 K (Fig. 3). In agreement with the results observed for the Q.S. in

FIG. 4. Thermal variation of the reciprocal molar susceptibilities for $Ba_5Fe_{2.18}^{JII}Fe_{0.2}^{II}F_{18.8}$ and $Ba_5Fe_{2.11}^{JII}M^{II}F_{18}$ (M = Fe, Cu).

Ba₅Fe^{III}_{2.8}Fe^{II}_{0.2}F_{18.8}, the Fe³⁺ ions may only occupy the regular octahedral sites of the $[M_2F_{12}]$ subnetwork. The Cu²⁺ ions are then all localized in the dimer.

$Ba_5Fe_2^{III}Fe^{II}F_{18}$

In this compound, isostructural with Ba₅Fe₂CuF₁₈, one single Fe³⁺ component and two distinct Fe²⁺ components are observed on the Mössbauer spectra (Fig. 3). The fitted data lead to a Q.S. for the Fe³⁺ cations of 0.33 mm/s, in agreement with a location of the latter in the regular octahedral sites of the $[M_2F_{12}]$ subnetwork. The Fe³⁺ rate is near 2/3 of the total iron.

The remaining 1/3 of the total iron which corresponds to the Fe²⁺ ions is localized in the isolated dimers. The local symmetries of the two sites of the dimer are not equivalent. This fact is well demonstrated by the Fe²⁺ ions which amplify the local symmetry effect (13), with two very different values for the quadrupolar splitting. The occupation rate of the two sites is equal (50/50), in agreement with a dimeric entity.

MAGNETIC MEASUREMENTS ON $Ba_5Fe_{2.3}^{III}Fe_{0.2}^{II}F_{18.8}$ AND $Ba_5Fe_2^{III}M^{II}F_{18}$ (M = Fe, Cu)

Magnetic measurements were carried out between 4.2 and 300 K by the Faraday method with $H_{\text{max}} = 10000$ G. The powder samples were inserted into an air-tight Teflon container and diamagnetic corrections were applied. The plots of the reciprocal molar susceptibility $\chi_{M^{-1}}$ versus temperature for the three compounds are displayed in Fig. 4. Above 30–40 K, Curie–Weiss laws are well obeyed with Curie constants $C_{\rm M}$ and paramagnetic Curie temperatures

163

TABLE 7Curie Constants $C_{\rm M}$ and Paramagnetic Curie Temperatures $\theta_{\rm n}$ for Ba₅Fe^{III}_{2.8}Fe^{III}_{0.2}F_{18.8} and Ba₅Fe^{III}₂M^{II}F₁₈ (M = Fe, Cu)

Compounds	$\begin{array}{c} C_{\mathrm{M(obs.)}}\\ (\mathrm{mol}^{-1} \cdot \mathrm{cm}^3 \cdot \mathrm{K}) \end{array}$	$\frac{C_{\mathrm{M(th.)}}}{(\mathrm{mol}^{-1}\cdot\mathrm{cm}^{3}\cdot\mathrm{K})}$	$\begin{pmatrix} \theta_p \\ (K) \end{pmatrix}$
Ba ₅ Fe ^{III} _{2.8} Fe ^{II} _{0.2} F _{18.8}	12.46	12.85	-6.7
Ba ₅ Fe ₂ CuF ₁₈	9.33	9.13	+1.9
Ba ₅ Fe ₂ FeF ₁₈	11.90	11.75	+0.3

 $\theta_{\rm p}$ given in Table 7. The Curie constants are very close to the theoretical ones calculated with the usual Curie constants for Fe³⁺ and Cu²⁺ and for the Fe²⁺ cation with a locked orbital moment. Below about 40 K, the decrease of $\chi \cdot T$ may indicate weak antiferromagnetic interactions (Fig. 5). Nevertheless, the greatest care must be taken for more precise interpretations, because θ_p values and interactions are very weak. According to the structure of these compounds, direct exchanges between transition ions are impossible. However, indirect exchanges through one F^- ion between two transition ions, M^{3+} in Ba₅Fe₃F₁₉ and M^{2+} in Ba₅Fe₂ MF_{18} ($M = Cu^{2+}, Fe^{2+}$), can occur in the dimers, as well as weak long-range interactions through F⁻ anions. In any case, the absence of a Zeeman sextet in the Mössbauer spectra between 40 and 4.2 K rules out the possibility of a 3-D cooperative extension of these interactions above 4.2 K. Only a line broadening is observed on the spectra, which confirms a beginning of a tridimensional magnetic order in agreement with the magnetic measurements. The Néel temperature of all these fluorides must be considerably lower than 4.2 K.

CONCLUSION

Mössbauer spectroscopy has demonstrated that the substitution of Fe^{3+} by Fe^{2+} or Cu^{2+} cations in $Ba_5Fe_3F_{19}$ to

FIG. 5. Thermal variation of $\chi \cdot T$ for Ba₅Fe^{III}_{2.8}Fe^{III}_{0.2}F_{18.8} and Ba₅Fe^{III}_{2.4}M^{II}F₁₈ (M = Fe, Cu).

give Ba₅Fe^{III}_{3-x} M_x^{II} F_{19-x} is strictly ordered and only takes place in the dimers. Therefore it is not possible to substitute more than one third of the Fe³⁺ cations of the structure: x is limited to the value 1. This limit is also observed for the solid solution Ba₅Sc_{3-x}Cu_xF_{19-x} (6) and for all the other Ba₅ $M_{3-x}^{III}M'_x^{II}$ F_{19-x} solid solutions hitherto described (M =Cr, Fe, V, Ga; M' = Ni, Mn, Cu, Fe) (1–3, 14–17).

The three compounds $Ba_5Fe_{2.8}^{III}Fe_{0.2}^{II}F_{18.8}$, $Ba_5Fe_2^{III}Fe^{II}$ F_{18} , and $Ba_5Fe_2^{III}Cu^{II}F_{18}$ are paramagnetic until 4.2 K. However, weak and localized antiferromagnetic interactions occur below 30–40 K. The broadening of the linewidth of the Fe³⁺ Mössbauer doublets in $Ba_5Fe_{2.8}^{III}Fe_{0.2}^{II}F_{18.8}$ at 4.2 K indicates a beginning of a tridimensional magnetic order. Some new measurements are in progress, especially to determine the Néel temperatures of these compounds.

REFERENCES

- 1. M. Samouël and A. de Kozak, Rev. Chim. Miner. 14, 471 (1977).
- 2. M. Samouël and A. de Kozak, Rev. Chim. Miner. 15, 268 (1978).

- 3. A. de Kozak and M. Samouël, Rev. Chim. Miner. 18, 255 (1981).
- M. Samouël, A. de Kozak, J. Renaudin, and G. Ferey, Z. Anorg. Allg. Chem. 569, 169 (1989).
- A. de Kozak, M. Samouël, J. Renaudin, and G. Ferey, Z. Anorg. Allg. Chem. 613, 98 (1992).
- P. Gredin, A. de Kozak, M. Quarton, J. Renaudin, and G. Ferey, Z. Anorg. Allg. Chem. 619, 1088 (1993).
- C. Jacoboni, A. Le Bail, R. de Pape, and J. P. Renard, *Stud. Inorg. Chem.* 3, 687 (1993).
- 8. J. Graulich and D. Babel, Z. Anorg. Allg. Chem. 597, 51 (1991).
- M. Welsch, H. Holler, and D. Babel, Z. Anorg. Allg. Chem. 575, 171 (1989).
- 10. M. Welsch, Thesis, Marburg/Lahn, Germany, 1991.
- M. Leblanc, G. Ferey, Y. Calage, and R. de Pape, *J. Solid State Chem.* 53, 360 (1984).
- 12. S. Morup and N. Thrane, Phys. Rev. B 8, 1020 (1984).
- 13. Y. Calage and F. Varret, Chem. Phys. Lett. 55, 380 (1978).
- 14. A. de Kozak and M. Samouël, Rev. Chim. Miner. 15, 406 (1978).
- M. Samouël, A. de Kozak, J. Renaudin, M. Leblanc, and G. Ferey, *Rev. Chim. Miner.* 22, 64 (1985).
- M. Samouël, A. de Kozak, J. Renaudin, and G. Ferey, J. Less-Common Met. 143, 93 (1988).
- M. Samouël, A. de Kozak, J. Renaudin, and G. Ferey, Z. Anorg. Allg. Chem. 590, 200 (1990).